Перейти к основному содержанию

$\ll$  Материалы для повторения | 20 вариантов | Электростатика | Вариант 20  $\gg$


1. Два заряда в вакууме взаимодействуют с такой же силой на расстоянии 27 см, как и воде на расстоянии 3 см. Определить диэлектрическую проницаемость воды.

2. Четыре одинаковых точечных заряда по 10 нКл каждый расположены в вершинах квадрата со стороной 3 мм. Найдите силу (в мН), действующую со стороны трех зарядов на четвертый.

3. Напряженность электрического поля, создаваемого зарядом на расстоянии 10 см от него 90 В/м. На каком расстоянии от заряда напряженность электрического поля на 30 В/м меньше?

4. В трех вершинах квадрата со стороной 30 см находятся точечные заряды по 1 нКл. Определить напряженность поля в четвертой вершине квадрата.

5. В двух противоположных вершинах квадрата со стороной 30 см находятся заряды 200 нКл каждый. Найдите потенциал (в кВ) в двух других вершинах квадрата.

6. Протон и a-частица помещены в однородное электрическое поле. Во сколько раз будут отличаться путипройденные частицами за одно и тоже время, если их начальная скорость равна нулю, масса протона в 4 раза, а заряд в два раза меньше соответствующих значений для a-частицы?

7. Чему равна емкость (в мкФ) конденсатора, если при увеличении его заряда на 30 мкКл разность потенциалов между пластинами увеличивается на 10 В?

8. Конденсатор емкостью 8 мкФ, заряженный до напряжения 100 В, подключают параллельно конденсатору такой же емкости, но заряженному до напряжения 200 В. Какое количество теплоты (в мДж) выделится при этом?

9. Внутрь плоского конденсатора параллельно его обкладкам помещают диэлектрическую пластину, площадь которой равна площади обкладок, а толщина вдвое меньше расстояния между ними. На сколько процентов возрастет емкость конденсатора, если диэлектрическая проницаемость пластины равна 4?

10. Два диэлектрических шара радиусом 1 см каждый равномерно заряжены одинаковым зарядом 0,4 мкКл. В начальный момент один из шаров массой 16 г покоится, а второй массой 8 г издалека приближается к нему со скоростью 6 м/с. Найдите скорость первоначально покоившегося шара сразу после их соударения, считая его абсолютно упругим.