on-line
Сейчас на сайте 0 пользователей и 9 гостей.
Вход в систему
Яндекс.Метрика

Явление отдачи, реактивное движение, формула Мещерского, Циолковского.

 Явление отдачи наблюдается, когда тело под действием внутренних сил распадается на две части, разлетающиеся друг от друга.ракета
Простой пример: из ствола орудия пороховые газы выбрасывают снаряд. Снаряд летит в одну сторону, а орудие, если оно не закреплено, откатывается назад − оно испытало отдачу. До выстрела орудия мы имели «тело», состоящее из самого орудия и снаряда внутри ствола. Произошел «распад» исходного тела − под действием внутренних сил оно «распалось» на две части (орудие и снаряд), движущиеся самостоятельно.
Вообразим следующую картину. Стоящий на скользком льду человек бросает в некотором направлении камень. Испытав отдачу, человек начнет скользить по льду в противоположном направлении.
 «Тело» человек + камень под действием мышечного усилия человека «распалось» на две части − на человека и камень. Отметим, что человек с камнем был поставлен на скользкий лед для того, чтобы существенно уменьшить силу трения и иметь дело с ситуацией, когда сумма внешних сил близка к нулю и работают лишь внутренние силы − человек действует на камень, бросая его, а камень действует в соответствии с третьим законом Ньютона на человека. В результате и наблюдается явление отдачи.
 Это явление можно объяснить с помощью закона сохранения импульса. Отвлекаясь от какой-либо жизненной ситуации, рассмотрим два тела с массами m1 и m2, покоящиеся относительно некоторой инерциальной системы отсчета (пусть это будет Земля). Будем полагать, что действием на тело со стороны внешних сил можно пренебречь. Предположим, что в результате действия внутренних сил система распалась − тело массой m1 приобрело скорость v1, а тело массой m2 − скорость v2. До распада импульс системы равнялся нулю (p = 0); после распада его можно представить в виде

Из закона сохранения импульса следует, что


Отсюда получаем:

Как и следовало ожидать, векторы v1 и v2 направлены противоположно. Если, например, v1 − скорость, с какой человек на льду бросил в горизонтальном направлении камень массой m1, то v2 − скорость человека массой m2, какую он приобрел вследствие отдачи. Так как m1 << m2, то из (1) следует, что

 Теперь предположим, что связка тел с массами M и m движется равномерно и прямолинейно со скоростью относительно неподвижной (инерциальной) системы отсчета. В результате действия внутренних сил (природа их в данном случае не имеет значения) связка распадается; тело с массой m приобретает скорость u относительно тела с массой M, так что его скорость относительно неподвижной системы отсчета оказывается равной

 Скорость тела с массой M в этой системе отсчета представим как

 Рассматривая систему тел как замкнутую, воспользуемся законом сохранения импульса, согласно которому

После раскрытия скобок и сокращений одинаковых слагаемых получаем соотношение

Из (2) видно, что направления векторов v1 и u противоположны.
 Интересен частный случай, когда вектор направлен навстречу вектору v. В данном случае тело массой M будет после распада связки продолжать двигаться в направлении вектора v, при этом модуль его скорости увеличится вследствие отдачи и будет равен v + um/M.
 От явления отдачи перейдем к рассмотрению реактивного движения на примере движения ракеты. В самых общих чертах это движение объясняется достаточно просто. При сгорании топлива из сопла ракеты вырываются с весьма большой скоростью газы. Вследствие отдачи ракета движется в направлении, противоположном направлению истечения газов из сопла.
 Обозначим через v скорость ракеты относительно Земли в некоторый момент времени t. Скорость ракеты в момент t + Δt обозначим через v + Δv. Изменение скорости ракеты произошло в результате того, что из нее была выброшена масса газа ΔM со скоростью u по отношению к ракете. Скорость u называют скоростью истечения. По завершении промежутка времени Δt масса ракеты вместе с топливом уменьшилась на ΔM. Промежуток Δt полагаем достаточно малым, чтобы можно было считать, что масса ракеты с топливом постоянна на данном промежутке и в конце его меняется скачком в результате мгновенного выброса массы газа ΔM (впоследствии мы перейдем к пределу при Δt → 0 и тем самым заменим импульсивный выброс газов их непрерывным истечением из сопла ракеты). Если масса ракеты с топливом в момент t равна M, то в момент t + Δt она будет равна M − ΔM.
 Итак, в момент времени t есть ракета с топливом, имеющая массу M и скорость относительно Земли. В момент t + Δt есть, во-первых, ракета с топливом, имеющая массу M − ΔM и скорость v + Δv относительно Земли, и, во-вторых, порция газа, имеющая массу ΔM и скорость v + u относительно Земли. Пренебрегая взаимодействием ракеты с внешними телами, воспользуемся законом сохранения импульса и запишем:

Раскрывая скобки, получаем

 Произведения Mv, а также ΔMv сокращаются. Произведением ΔMΔv можно пренебречь, так как здесь перемножаются две малых величины; как принято говорить, такое произведение представляет собой величину второго порядка малости. В результате соотношение (4) преобразуется к виду (сравните с (3)):

Разделим обе части этого равенства на Δt; получим

Учтем, что

и затем перейдем в обеих частях равенства (5) к пределу при Δt → 0.

Предел

есть мгновенное ускорение ракеты.
Величину ΔM/dt назовем средним за промежуток времени Δt расходом топлива. Величина

мгновенный расход топлива для момента времени t. С учетом сделанных замечаний (6) примет вид

Ускорение a(t) вызывается силой

которую называют реактивной силой. Она пропорциональна расходу топлива и скорости истечения газа и направлена противоположно скорости истечения.
 Если на летящую ракету действует, кроме реактивной силы Fp(t), некоторая внешняя сила F(t), то соотношение (7) следует
заменить соотношением:

 Это соотношение представляет собой обобщение второго закона Ньютона для движения тела переменной массы. Оно получило название формулы Мещерского (по имени российского ученого Ивана Всеволодовича Мещерского, исследовавшего механику тел переменной массы).


Вывод формулы (формула Циолковского), связывающей массу и скорость ракеты.
Примем, что топливо сгорает отдельными порциями массой ΔM = M/N, где М − масса ракеты перед выбросом из нее порции ΔM, а N − достаточно большое число. После сгорания первой порции масса ракеты станет равной

 После сгорания второй порции масса вновь уменьшится на (1/N)–ю часть, но уже от массы M1, и станет равной

 Рассуждая таким же образом далее, находим массу ракеты после сгорания n-й порции

 Рассмотрим теперь как меняется при этом скорость ракеты. При скорости истечения продуктов горения, равной u, масса ΔM уносит импульс Δp = uΔM. В соответствии с законом сохранения импульса такой же по величине, но противоположно направленный импульс получит ракета, в результате чего ее скорость увеличится на

 Таким образом, если вначале ракета покоилась, то после сгорания первой порции массой ΔM1 = M0/N, имевшей импульс Δp1 = M0u/N, скорость ракеты станет равной

 После сгорания второй порции топлива массой ΔM2 = M1/N, унесшей импульс Δp2/(M1 − M1/N) и составит

 Продолжая рассуждения далее, получим скорость ракеты после сгорания n-й порции:

Тогда масса ракеты, достигшей скорости v

индекс n здесь и далее опущен, поскольку надобности в нем больше нет.
 На самом деле топливо в ракете сгорает не отдельными порциями, а непрерывно. Для перехода к формуле, более правильно описывающей реальный случай, нужно считать N чрезвычайно большим числом. В таком случае единицей показателе степени последнего выражения можно пренебречь, после чего оно приобретет вид

или при неограниченном возрастании N

 Эта формула была выведена К.Э. Циолковским и носит его имя. Из нее хорошо видно, что ракета может достичь большой скорости, но при этом оставшаяся масса окажется много меньше первоначальной.


Задача 1
 Из ракеты массой M, движущейся со скоростью v, выбрасывается порция топлива m со скоростью u относительно ракеты. Какой станет скорость ракеты? Какую скорость будет иметь ракета после выброса 2-х, 3-х, k порций?

Задача 2
 Ракета перед стартом имеет массу m0 = 120 кг. На какой высоте окажется ракета через t = 15 с после начала работы ее двигателей? Считайте расход топлива μ = 4 кг/с и скорость истечения газов относительно ракеты u = 1000 м/с постоянными. 1) Считайте поле тяготения Земли однородное, 2) Считайте поле тяготения Земли неоднородное.