on-line
Сейчас на сайте 0 пользователей и 9 гостей.
Вход в систему
Яндекс.Метрика

35.7 Принцип суперпозиции для электростатических сил.

 Вернемся к обсуждению закона Ш. Кулона. При этом мы постоянно будем использовать его аналогию с законом всемирного тяготения − раз формулировки совпадают, то и следствия из них должны совпадать. Поэтому у нас есть возможность достаточно быстро повторить основные выводы.
 Прежде всего, обратим внимание, что сила взаимодействия точечных тел прямо пропорциональна величине заряда. Это обстоятельство является математическим выражением принципа суперпозиции: сила, действующая на точечный заряд со стороны системы зарядов q1, q2, … qk равна сумме сил, действующих со стороны каждого из зарядов q1, q2, … qk (рис. 228)


рис. 228


 Подчеркнем, что формула закона Ш. Кулона выражает справедливость принципа суперпозиции, который является обобщением экспериментальных фактов.
 Принцип суперпозиции выражает независимость сил электростатических взаимодействий, взаимодействие с одним зарядом, никак не влияет на взаимодействие с остальными.
 Закон Ш. Кулона для точечных тел и принцип суперпозиции позволяют, в принципе, вычислять силы взаимодействия между заряженными телами конечных размеров. Для этого необходимо мысленно разбить каждое из тел на малые участки, каждый из которых можно рассматривать как точечный заряд (рис. 229),

рис. 229

затем вычислить двойную сумму сил взаимодействия между всеми парами точек.
 Для использования этого метода расчета силы взаимодействия, необходимо знать распределение зарядов внутри каждого из взаимодействующих тел. В отличие от гравитационного взаимодействия, во многих случая (точнее, практически всегда) распределение зарядов на телах заранее не известно. Так одно заряженное тело существенно влияет на распределение зарядов на другом, поэтому расчет сил взаимодействия между заряженными телами является еще более сложной задачей, чем расчет силы гравитационного взаимодействия. Для подтверждения этого утверждения сошлемся на существование сил притяжения между заряженным и незаряженным телом.
 Так сила электростатического взаимодействия между точечными зарядами обратно пропорциональна квадрату расстояния между телами, то сила взаимодействия между равномерно заряженными сферами равна силе взаимодействия между точечными зарядами, равными зарядам сфер, и расположенными в центрах этих сфер. Аналогичный вывод справедлив и для любых сферически симметричных распределений зарядов. Иными словами − сферически симметричные заряды можно собрать в одну точку − в центр, при этом силы электростатического взаимодействия не изменятся. И. Ньютон доказал это утверждения для гравитационных сил, совсем скоро мы докажем его для электростатических взаимодействий.
 Одинаковая зависимость гравитационных и электростатических сил от расстояния позволяет сравнивать эти силы между собой. Для двух одинаковых точечных тел имеющих массы m и заряды q, отношение электрической к гравитационной силе выражается формулой

 Так для двух протонов это отношение приблизительно равно 1 × 1036, а для более легких электронов даже 4 × 1042 − весьма внушительные числа! Поэтому при описании взаимодействия заряженных частиц гравитационным взаимодействием пренебрегают. В наших экспериментах (со стаканчиками), гравитационные взаимодействия между ними также пренебрежимо малы, по сравнению с электрическими. Практически во всех случаях, где появляются электрические силы, гравитационные уходят на второй план. Громадность электрических сил, во многом, обуславливает их широкое применение в нашей жизни, и необходимость их изучения.