on-line
Сейчас на сайте 0 пользователей и 39 гостей.
Вход в систему
Яндекс.Метрика

§ 21. Гравитационные взаимодействия

21.1. Закон всемирного тяготения Ньютона
 Гравитационные взаимодействия присущи всем материальным телам (рис. 111).


рис. 111

 Закон, описывающий эти силы, открытый И. Ньютоном и опубликованный в 1687 году, получил название закона всемирного тяготения: две материальные точки притягиваются с силами, пропорциональными произведению масс этих точек, обратно пропорциональными квадрату расстояния между точками и направленными вдоль прямой, соединяющей эти точки:

 Так как сила является векторной величиной, то и формуле, определяющей силу притяжения, следует придать векторную форму.
 Для этого введем вектор r12, соединяющий точки 1 и 2 (рис. 112).

рис. 112

Тогда сила притяжения, действующая на второе тело, может быть записана в виде

 В формулах (1), (2) коэффициент пропорциональности в называется гравитационной постоянной. Значение этой величины не может быть найдено из других физических законов и определено экспериментально. Численное значение гравитационной постоянной зависит от выбора системы единиц, так, в СИ оно равно:

 Впервые гравитационную постоянную экспериментально измерил английский физик Генри Кавендиш. В 1798 году он сконструировал крутильные весы и измерил с их помощью силу притяжения двух сфер, подтвердив закон всемирного тяготения; определил гравитационную постоянную, массу и среднюю плотность Земли.
 Вопрос о природе гравитационного взаимодействия является чрезвычайно сложным. Сам И. Ньютон на этот вопрос давал лаконичный ответ: «Гипотез не измышляю», тем самым отказываясь даже рассуждать на эту тему. Достаточно того, что закон всемирного тяготения с высокой степенью точности количественно описывает гравитационное взаимодействие. Громадные успехи ньютоновской механики почти на два столетия предопределили подобный подход ко всей физической науке, не только механике: достаточно открыть, найти законы, правильно описывающие физические явления, и научиться применять их к количественному описанию этих явлений.
 Так, в изучении гравитации считалось, что непонятным образом одно тело может оказывать влияние на другое, причем это влияние передается мгновенно, то есть изменение положения одного из тел мгновенно изменяет силы, действующие на другие тела, независимо от того, на каком расстоянии эти тела расположены. Этот общий подход к характеру физических взаимодействий получил название теории дальнодействия. Подобный взгляд на взаимодействия тел был распространен на электрические и магнитные явления, изучение которых активно проводилось в течение XVIII − XIX веков. Лишь в 30-х годах XIX века английским физиком М. Фарадеем для электромагнитных взаимодействий были сформулированы основные положения альтернативной теории близкодействия: для передачи взаимодействия обязательно необходим «посредник», некая среда, передающая эти взаимодействия; сами взаимодействия не могут передаваться мгновенно, требуется определенное время для того, чтобы изменение в положении одного из тел «почувствовали» другие взаимодействующие тела. В начале XX столетия немецкий физик А. Эйнштейн построил новую теорию гравитации − общую теорию относительности. В рамках этой теории гравитационные взаимодействия объясняются следующим образом: каждое тело, обладающее массой, изменяет свойства пространства времени вокруг себя (создает гравитационное поле), другие же тела движутся в этом измененном пространстве времени (в гравитационном поле), что приводит к появлению наблюдаемых сил, ускорению и т. д. С этой точки зрения выражение «находится в гравитационном поле» эквивалентно выражению «действуют гравитационные силы».
 К этим вопросам мы обратимся позднее при изучении электромагнитного поля.
 Самое поразительное в явлении тяготения заключается в том, что гравитационные силы пропорциональны массам тел. Действительно, ранее мы говорили о массе как о мере инертности тела. Оказалось, что масса также определяет принципиально иное свойство материальных тел − является мерой способности участвовать в гравитационных взаимодействиях. Поэтому можно говорить о двух массах − инерционной и гравитационной. Закон всемирного тяготения утверждает, что эти массы пропорциональны друг другу. Подтверждением этого утверждения является давно известный факт: все тела падают на землю с одинаковым ускорением. Экспериментально с высокой точностью пропорциональность гравитационной и инерционной масс была подтверждена в работах венгерского физика Лоранда Этвеша. Впоследствии пропорциональность инерционной и гравитационной масс легла в основу новой теории гравитации − общей теории относительности А. Эйнштейна.
 В заключение отметим, что закон всемирного тяготения может быть положен в основу определения единицы массы (конечно, гравитационной). Например: два точечных тела единичной гравитационной массы, находящиеся на расстоянии в один метр, притягиваются с силой в один Н.

Задание для самостоятельной работы: определите массы двух точечных тел, находящихся на расстоянии 1,0 м друг от друга и взаимодействующих с силой 1,0 Н.

 Для гравитационных сил справедлив принцип суперпозиции: сила, действующая на точечное тело со стороны нескольких других тел, равна сумме сил, действующих со стороны каждого тела. Это утверждение также является обобщением экспериментальных данных и фундаментальным свойством гравитационных взаимодействий.
 Посмотрим на принцип суперпозиции с математической точки зрения: по закону всемирного тяготения сила гравитационного взаимодействия пропорциональна массе этих тела. Если бы зависимость от масс была нелинейна, то и принцип суперпозиции не выполнялся бы. Действительно, пусть тело массой mo взаимодействует с двумя точечными телами массами m1 и m2. Поместим мысленно тела m1 и m2 в одну точку (тогда их можно рассматривать как одно тело). В этом случае сила, действующее на тело mo, равна:


представлена в виде суммы сил, действующих со стороны двух тел − m1 и m2.
 В случае нелинейной зависимости между силой и массой принцип суперпозиции был бы несправедлив.
Закон всемирного тяготения для точечных тел и принцип суперпозиции позволяют, в принципе, вычислять силы взаимодействия между телами конечных размеров (рис. 113).

рис. 113

 Для этого необходимо мысленно разбить каждое из тел на малые участки, каждый из которых можно рассматривать как материальную точку. Затем вычислить двойную сумму сил взаимодействия между всеми парами точек. В общем случае вычисление такой суммы является сложной математической задачей.
 Подчеркнем, что сила взаимодействия между телами конечных размеров вычисляется только методом разбиения тел и последующего суммирования. Ошибочно утверждение о том, что сила взаимодействия между телами может быть вычислена как сила взаимодействия, равная силе взаимодействия точечных тел, расположенных в центрах масс. Для обоснования этого утверждения рассмотрим простой пример.
 Пусть одно из взаимодействующих тел можно считать материальной точкой массы mo, а второе тело представимо в виде двух материальных точек равных масс m, расположенных на фиксированном расстоянии а друг от друга (рис. 114).

рис. 114

 Все материальные точки расположены на одной прямой, расстояние от первого тела до центра второго обозначим r. Сила притяжения, действующая на тело mo, равна:

 Если же соединить материальные точки, составляющие второе тело, в одну массой 2m, расположенную в центре тела, то сила взаимодействия будет равна:

что отличается от выражения (3). Только при r >> а выражение (3) переходит в формулу (2). Заметьте, что в этом случае второе тело следует рассматривать как материальную точку.

Задание для самостоятельной работы: при каком отношении а/r погрешность формулы (4) (по сравнению с точным выражением (3)) не превышает 1 %?