on-line
Сейчас на сайте 0 пользователей и 45 гостей.
Вход в систему
Яндекс.Метрика

19.3. Вращательное движение твердого тела. Момент силы

 Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси1.
 Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси ОО/ (рис. 106).


рис. 106

 Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения.
Безусловно, движение точки подчиняется уравнению второго закона Ньютона

 Однако непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку − сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.
 Пусть в некоторый момент времени на материальную точку действует некоторая сила F, лежащая в плоскости, перпендикулярной оси вращения (рис. 107).

рис. 107

 При кинематическом описании криволинейного движения вектор полного ускорения а удобно разложить на две составляющие − нормальную аn, направленную к оси вращения, и тангенциальную аτ, направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых − неизвестная сила натяжения стержня.
Запишем уравнение второго закона в проекции на тангенциальное направление:

 Заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью
ω = Δφ/Δt,

изменение которой, в свою очередь, описывается угловым ускорением
ε = Δω/Δt.

 Угловое ускорение связано с тангенциальной составляющей ускорения соотношением
аτ = rε.

 Если подставим это выражение в уравнение (1), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r:
mr2ε = Fτr. (2)

 Рассмотрим выражение в его правой части Fτr, имеющее смысл
произведения тангенциальной составляющей силы на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить в несколько иной форме (рис. 108):

рис. 108

M = Fτr = Frcosα = Fd,

здесь d − расстояние от оси вращения до линии действия силы, которое также называют плечом силы.
 Эта физическая величина − произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) М = Fd − называется моментом силы. Действие силы может приводить к вращению как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому не влияет на вращение тела.
 Запишем еще одно полезное выражения для момента силы. Пусть сила F приложена к точке А, декартовые координаты которой равны х, у (рис. 109).

рис. 109

 Разложим силу F на две составляющие Fх, Fу, параллельные соответствующим осям координат. Момент силы F относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих Fх, Fу, то есть
М = хFу − уFх.

Аналогично, тому, как нами было введено понятие вектора угловой скоро¬сти, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения (рис. 110).

рис. 110

 Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

 Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.
 Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения
mr2 = I

(эта величина называется моментом инерции материальной точки относительно оси). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения:
Iε = M. (3)

 Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, − именно он определяет изменение угловой скорости. Оказывается (и это подтверждает наш повседневный опыт), влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком − показывает, легко ли раскрутить тело): чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.
 Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I − момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M − сумма моментов внешних сил, действующих на тело.
 Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, что момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 111),

рис. 111

и суммированию моментов инерции этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения:

 Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра, массы m и радиуса R, для оси вращения, совпадающей с осью цилиндра равен:
I = (1/2)mR2 (рис. 112).


рис. 112

1В данном случае мы ограничиваемся рассмотрением вращения вокруг фиксированной оси, потому что описание произвольного вращательного движения тела представляет собой сложную математическую проблему, далеко выходящую за рамки курса математики средней школы. Знания же других физических законов, кроме рассматриваемых нами, это описание не требует.