Партнеры
Вход в систему
Яндекс.Метрика
on-line
Сейчас на сайте 0 пользователей и 2 гостя.

2. Кузнечик сидит на одном из концов соломинки длины l = 50 см, покоящейся на гладком полу. С какой минимальной относительно пола скоростью vo он должен прыгнуть, чтобы при приземлении попасть точно на второй конец соломинки? Масса кузнечика в β = 3 раза больше массы соломинки. Размерами кузнечика и трением между полом и соломинкой пренебречь.

Решение.
 В системе двух тел «кузнечик + соломинка» сохраняется горизонтальная проекция суммарного импульса, откуда следует, что в неподвижной системе отсчета справедливо равенство:

Mvocosα = Mu,

где m и М − массы кузнечика и соломинки, u — скорость соломинки.
Отсюда
u = mvocosα/М.

 Время to, которое кузнечик проводит в полете, легко найти из уравнений кинематики как для тела, подброшенного вверх со скоростью vosinα
to = 2vosinα/g.

кузнечик За это время перемещение соломинки влево и горизонтальное перемещение кузнечика вправо примут следующие значения (см. рисунок):
Sc = uto = (2vo2/g)·(m/M)·sinαcosα, Sк = votocosα = (2vo2/g)sinαcosα.

 Для того, чтобы кузнечик при приземлении попал точно на правый конец соломинки, эти величины должны быть связаны соотношением:
Sc + Sк = l.

 Объединяя записанные равенства и учитывая, что m/М = β, находим величину начальной скорости кузнечика:
vo = √{gl/(sin2α × (1 + β))}.

Эта величина минимальна при sin2α = 1, т.е. при α = 45°.
Таким образом, ответ имеет вид:
vo = √{gl/(1 + β)} = 1,1 м/с.