Партнеры
Вход в систему
Яндекс.Метрика
on-line
Сейчас на сайте 0 пользователей и 9 гостей.

Длительность удара.

Оценить время упругого удара твердых тел, рассматривая столкновение стержня, налетающего торцом на неподвижную недеформируемую стенку (рис.).


 Чаще всего в задачах считают, что упругий удар твердых тел происходит мгновенно, но совершенно очевидно, что это предположение является идеализацией.
 Столкновение реальных тел всегда занимает конечный промежуток времени τ. В самом деле, если бы изменение импульса тела при столкновении происходило мгновенно,
F = mΔv/t→0 → ∞

то сила взаимодействия тел при ударе была бы бесконечно большой, чего, естественно, не бывает.
 От чего же может зависеть длительность столкновения? Допустим, что мы рассматриваем отражение упругого тела от недеформируемой стенки. При столкновении кинетическая энергия тела в течение первой половины столкновения превращается в потенциальную энергию упругой деформации тела. В течение второй половины происходит обратное превращение энергии деформации в кинетическую энергию отскакивающего тела.

 Такая идея была заложена в задаче тестирования 2005 г. Решите эту задачу, для осмысления этого момента.
Задача. Две абсолютно упругие шайбы массами m1 = m2 = 240 г каждая скользят поступательно по гладкой горизонтальной поверхности навстречу друг другу со скоростями, модули которых v1 = 21 м/с и v2 = 9,0 м/с. Максимальное значение потенциальной энергии E упругой деформации шайб при их центральном столкновении равно ... Дж. [54]

 Поэтому очевидно, что упругие свойства тела играют определенную роль при столкновении. Итак, можно ожидать, что длительность удара зависит от модуля Юнга материала тела Е, его плотности ρ и его геометрических размеров. Возможно, что длительность удара τ зависит и от скорости v, с которой тело налетает на преграду.
 Нетрудно убедиться, что оценить время столкновения с помощью одних только соображений размерности не удастся. Действительно, если даже взять в качестве налетающего тела шар, размеры которого характеризуются только одним параметром − радиусом R, то из величин Е, ρ, R и v можно составить бесчисленное множество выражений, имеющих размерность времени:

τ = √{ρ/E} × f(ρv2/E), (1)

где f − произвольная функция безразмерной величины ρv2. Поэтому для нахождения τ необходимо динамическое рассмотрение.
 Проще всего такое рассмотрение провести для тела, имеющего форму длинного стержня.
 Пусть стержень, движущийся со скоростью v, налетает торцом на неподвижную стенку. При соприкосновении торцевого сечения стержня со стенкой скорости лежащих в этом сечении частиц стержня мгновенно обращаются в нуль. В следующий момент времени останавливаются частицы, расположенные в соседнем сечении, и т. д. Участок стержня, частицы которого к данному моменту уже остановились, находится в деформированном состоянии. Другими словами, в этот момент времени деформированной оказывается та часть стержня, до которой дошла волна упругой деформации, распространяющаяся по стержню от места контакта с преградой. Эта волна деформации распространяется по стержню со скоростью звука u. Если считать, что стержень пришел в соприкосновение со стенкой в момент времени t = 0, то в момент времени t длина сжатой части стержня равна ut. Эта часть стержня на рис. а заштрихована.

В незаштрихованной части стержня скорости всех его частиц по-прежнему равны v, а в сжатой (заштрихованной) части стержня все частицы покоятся.
 Первый этап процесса столкновения стержня со стенкой закончится в тот момент, когда весь стержень окажется деформированным, а скорости всех его частиц обратятся в нуль (рис. б).

В этот момент кинетическая энергия налетающего стержня целиком превращается в потенциальную энергию упругой деформации. Сразу после этого начинается второй этап столкновения, при котором стержень возвращается в недеформированное состояние. Этот процесс начинается у свободного конца стержня и, распространяясь по стержню со скоростью звука, постепенно приближается к преграде. На рис. в

стержень показан в тот момент, когда незаштрихованная часть уже не деформирована и все ее частицы имеют скорость v, направленную влево. Заштрихованный участок по-прежнему деформирован, и скорости всех его частиц равны нулю.
 Конец второго этапа столкновения наступит в тот момент, когда весь стержень окажется недеформированным, а все частицы стержня приобретут скорость v, направленную противоположно скорости стержня до удара. В этот момент правый конец стержня отделяется от преграды: недеформированный стержень отскакивает от стенки и движется в противоположную сторону с прежней по модулю скоростью (рис. г).

 Энергия упругой деформации стержня при этом целиком переходит обратно в кинетическую энергию.
Из изложенного ясно, что длительность столкновения τ равна времени прохождения фронта волны упругой деформации по стержню туда и обратно:
τ = 2l/u, (2)

где l − длина стержня.
 Определить скорость звука в стержне u можно следующим образом. Рассмотрим стержень в момент времени t (рис. а), когда волна деформации распространяется влево. Длина деформированной части стержня в этот момент равна ut. По отношению к недеформированному состоянию эта часть укоротилась на величину vt, равную расстоянию, пройденному к этому моменту еще недеформированной частью стержня. Поэтому относительная деформация этой части стержня равна v/u. На основании закона Гука
v/u = (1/E) × F/S, (3)

где S − площадь поперечного сечения стержня, F − сила, действующая на стержень со стороны стенки, Е − модуль Юнга.
 Поскольку относительная деформация v/u одинакова во все моменты времени, пока стержень находится в контакте с преградой, то, как видно из формулы (3), сила F постоянна. Для нахождения этой силы применим закон сохранения импульса к остановившейся части стержня. До контакта с преградой рассматриваемая часть стержня имела импульс ρSut•v, а в момент времени t ее импульс равен нулю.
 Поэтому
ρSut•v = Ft. (4)

 Подставляя отсюда силу F в формулу (3), получаем
u = √{E/ρ}. (5)

Теперь выражение для времени τ. Деформация столкновения стержня со стенкой (2) принимает вид
τ = 2l√{ρ/E}. (6)

Время столкновения τ можно найти и иначе, воспользовавшись для этого законом сохранения энергии. Перед столкновением стержень недеформирован и вся его энергия − это кинетическая энергия поступательного движения mv2/2. Спустя время τ/2 с начала столкновения скорости всех его частиц, как мы видели, обращаются в нуль, а весь стержень сказывается деформированным (рис. б). Длина стержня уменьшилась на величину Δl по сравнению с его недеформированным состоянием (рис. д).

 В этот момент вся энергия стержня − это энергия его упругой деформации. Эту энергию можно записать в виде
W = k(Δl)2/2,

где k − коэффициент пропорциональности между силой и деформацией:
F = kΔl.

Этот коэффициент с помощью закона Гука выражается через модуль Юнга E и размеры стержня:
σ = F/S = (Δl/l)E,

F = SEΔl/l и F = kΔl,

отсюда
k = ES/l. (7)

 Максимальная деформация Δl равна тому расстоянию, на которое перемещаются частицы левого конца стержня за время τ/2 (рис. д). Так как эти частицы двигались со скоростью v, то
Δl = vτ/2. (8)

 Приравниваем кинетическую энергию стержня до удара и потенциальную энергию деформации. Учитывая, что масса стержня
m = ρSl,

и используя соотношения (7) и (8), получаем
ρSlv2/2 = ES/(2l) × (vτ/2)2,

откуда для τ снова получаем формулу (6).
 Это время столкновения обычно очень мало. Например, для стального стержня (E = 2 × 1011 Па, ρ = 7,8 × 103 кг/м3) длиной 28 см вычисление по формуле (6) дает τ = 10−4 с.
 Силу F, действующую на стенку во время удара, можно найти, подставляя скорость звука в стержне (5) в формулу (4):
F = Sv√{ρE}. (9)

 Видно, что сила, действующая на стенку, пропорциональна скорости стержня перед ударом. Но для применимости приведенного решения необходимо, чтобы механическое напряжение стержня F/S не превосходило предела упругости материала, из которого изготовлен стержень. Например, для стали предел упругости
(F/S)max = 4 × 108 Па.

 Поэтому максимальная скорость v стального стержня, при которой его соударение с преградой все еще можно считать упругим, оказывается согласно формуле (9) равной 10 м/с. Это соответствует скорости свободного падения тела с высоты всего лишь 5 м.
 Укажем для сравнения, что скорость звука в стали u = 5000 м/с, т. е. v << u.
 Время столкновения стержня с неподвижной преградой (в отличие от силы) оказалось не зависящим от скорости стержня. Этот результат, однако, не является универсальным, а связан со специфической формой рассматриваемого тела. Например, для упругого шара время столкновения со стенкой зависит от его скорости. Динамическое рассмотрение этого случая оказывается более сложным. Связано это с тем, что и площадь соприкосновения деформированного шара со стенкой, и действующая на шар сила в процессе столкновения не остаются постоянными.


Смотрите еще:
Практикум абитуриента, школьника, олимпиадника.
Подготовка олимпиадника.
Подготовка абитуриента.